3.708 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx\)

Optimal. Leaf size=253 \[ -\frac{5 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 g^3 \sqrt{d+e x} (f+g x)}+\frac{5 c^3 d^3 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{8 g^{7/2} \sqrt{c d f-a e g}}-\frac{5 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3} \]

[Out]

(-5*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*g^3*Sqrt[d + e*x]*(f + g*x)) - (5*c*d*(a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(12*g^2*(d + e*x)^(3/2)*(f + g*x)^2) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(5/2)/(3*g*(d + e*x)^(5/2)*(f + g*x)^3) + (5*c^3*d^3*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*
e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(8*g^(7/2)*Sqrt[c*d*f - a*e*g])

________________________________________________________________________________________

Rubi [A]  time = 0.336287, antiderivative size = 253, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {862, 874, 205} \[ -\frac{5 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 g^3 \sqrt{d+e x} (f+g x)}+\frac{5 c^3 d^3 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{8 g^{7/2} \sqrt{c d f-a e g}}-\frac{5 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g*x)^4),x]

[Out]

(-5*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(8*g^3*Sqrt[d + e*x]*(f + g*x)) - (5*c*d*(a*d*e + (c*
d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(12*g^2*(d + e*x)^(3/2)*(f + g*x)^2) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x
^2)^(5/2)/(3*g*(d + e*x)^(5/2)*(f + g*x)^3) + (5*c^3*d^3*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*
e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/(8*g^(7/2)*Sqrt[c*d*f - a*e*g])

Rule 862

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(n + 1)), x] + Dist[(c*m)/(e*g*(n + 1)), Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f
 - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] && GtQ[p,
 0] && LtQ[n, -1] &&  !(IntegerQ[n + p] && LeQ[n + p + 2, 0])

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2} (f+g x)^4} \, dx &=-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac{(5 c d) \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)^3} \, dx}{6 g}\\ &=-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac{\left (5 c^2 d^2\right ) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x} (f+g x)^2} \, dx}{8 g^2}\\ &=-\frac{5 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x} (f+g x)}-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac{\left (5 c^3 d^3\right ) \int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{16 g^3}\\ &=-\frac{5 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x} (f+g x)}-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac{\left (5 c^3 d^3 e^2\right ) \operatorname{Subst}\left (\int \frac{1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )}{8 g^3}\\ &=-\frac{5 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{8 g^3 \sqrt{d+e x} (f+g x)}-\frac{5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{12 g^2 (d+e x)^{3/2} (f+g x)^2}-\frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{3 g (d+e x)^{5/2} (f+g x)^3}+\frac{5 c^3 d^3 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d f-a e g} \sqrt{d+e x}}\right )}{8 g^{7/2} \sqrt{c d f-a e g}}\\ \end{align*}

Mathematica [A]  time = 0.390151, size = 171, normalized size = 0.68 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\frac{15 c^3 d^3 \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c d f-a e g}}\right )}{\sqrt{a e+c d x} \sqrt{c d f-a e g}}-\frac{\sqrt{g} \left (8 a^2 e^2 g^2+2 a c d e g (5 f+13 g x)+c^2 d^2 \left (15 f^2+40 f g x+33 g^2 x^2\right )\right )}{(f+g x)^3}\right )}{24 g^{7/2} \sqrt{d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/((d + e*x)^(5/2)*(f + g*x)^4),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(-((Sqrt[g]*(8*a^2*e^2*g^2 + 2*a*c*d*e*g*(5*f + 13*g*x) + c^2*d^2*(15*f^2 + 40*
f*g*x + 33*g^2*x^2)))/(f + g*x)^3) + (15*c^3*d^3*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]])/(Sqr
t[c*d*f - a*e*g]*Sqrt[a*e + c*d*x])))/(24*g^(7/2)*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [A]  time = 0.328, size = 441, normalized size = 1.7 \begin{align*} -{\frac{1}{24\,{g}^{3} \left ( gx+f \right ) ^{3}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade} \left ( 15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{3}{c}^{3}{d}^{3}{g}^{3}+45\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){x}^{2}{c}^{3}{d}^{3}f{g}^{2}+45\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) x{c}^{3}{d}^{3}{f}^{2}g+15\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){c}^{3}{d}^{3}{f}^{3}+33\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}{x}^{2}{c}^{2}{d}^{2}{g}^{2}+26\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}xacde{g}^{2}+40\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}x{c}^{2}{d}^{2}fg+8\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}{a}^{2}{e}^{2}{g}^{2}+10\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}acdefg+15\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}{c}^{2}{d}^{2}{f}^{2} \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{cdx+ae}}}{\frac{1}{\sqrt{ \left ( aeg-cdf \right ) g}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x)

[Out]

-1/24*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(15*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x^3*c^3
*d^3*g^3+45*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*x^2*c^3*d^3*f*g^2+45*arctanh((c*d*x+a*e)^(1/2
)*g/((a*e*g-c*d*f)*g)^(1/2))*x*c^3*d^3*f^2*g+15*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*c^3*d^3*f
^3+33*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*x^2*c^2*d^2*g^2+26*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*x
*a*c*d*e*g^2+40*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*x*c^2*d^2*f*g+8*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^
(1/2)*a^2*e^2*g^2+10*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*a*c*d*e*f*g+15*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a
*e)^(1/2)*c^2*d^2*f^2)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^3/(g*x+f)^3/((a*e*g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}}{{\left (e x + d\right )}^{\frac{5}{2}}{\left (g x + f\right )}^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/((e*x + d)^(5/2)*(g*x + f)^4), x)

________________________________________________________________________________________

Fricas [B]  time = 1.90201, size = 2349, normalized size = 9.28 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x, algorithm="fricas")

[Out]

[-1/48*(15*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c^3*d^3*e*f^2*g + c^3
*d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(-c*d*f*g + a*e*g^2)*log(-(c*d*e*g*x^2 - c*d^2*f +
2*a*d*e*g - (c*d*e*f - (c*d^2 + 2*a*e^2)*g)*x - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-c*d*f*g +
a*e*g^2)*sqrt(e*x + d))/(e*g*x^2 + d*f + (e*f + d*g)*x)) + 2*(15*c^3*d^3*f^3*g - 5*a*c^2*d^2*e*f^2*g^2 - 2*a^2
*c*d*e^2*f*g^3 - 8*a^3*e^3*g^4 + 33*(c^3*d^3*f*g^3 - a*c^2*d^2*e*g^4)*x^2 + 2*(20*c^3*d^3*f^2*g^2 - 7*a*c^2*d^
2*e*f*g^3 - 13*a^2*c*d*e^2*g^4)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c*d^2*f^4*g^4 -
 a*d*e*f^3*g^5 + (c*d*e*f*g^7 - a*e^2*g^8)*x^4 + (3*c*d*e*f^2*g^6 - a*d*e*g^8 + (c*d^2 - 3*a*e^2)*f*g^7)*x^3 +
 3*(c*d*e*f^3*g^5 - a*d*e*f*g^7 + (c*d^2 - a*e^2)*f^2*g^6)*x^2 + (c*d*e*f^4*g^4 - 3*a*d*e*f^2*g^6 + (3*c*d^2 -
 a*e^2)*f^3*g^5)*x), -1/24*(15*(c^3*d^3*e*g^3*x^4 + c^3*d^4*f^3 + (3*c^3*d^3*e*f*g^2 + c^3*d^4*g^3)*x^3 + 3*(c
^3*d^3*e*f^2*g + c^3*d^4*f*g^2)*x^2 + (c^3*d^3*e*f^3 + 3*c^3*d^4*f^2*g)*x)*sqrt(c*d*f*g - a*e*g^2)*arctan(sqrt
(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*f*g - a*e*g^2)*sqrt(e*x + d)/(c*d*e*g*x^2 + a*d*e*g + (c*d^2
+ a*e^2)*g*x)) + (15*c^3*d^3*f^3*g - 5*a*c^2*d^2*e*f^2*g^2 - 2*a^2*c*d*e^2*f*g^3 - 8*a^3*e^3*g^4 + 33*(c^3*d^3
*f*g^3 - a*c^2*d^2*e*g^4)*x^2 + 2*(20*c^3*d^3*f^2*g^2 - 7*a*c^2*d^2*e*f*g^3 - 13*a^2*c*d*e^2*g^4)*x)*sqrt(c*d*
e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d))/(c*d^2*f^4*g^4 - a*d*e*f^3*g^5 + (c*d*e*f*g^7 - a*e^2*g^8)*x
^4 + (3*c*d*e*f^2*g^6 - a*d*e*g^8 + (c*d^2 - 3*a*e^2)*f*g^7)*x^3 + 3*(c*d*e*f^3*g^5 - a*d*e*f*g^7 + (c*d^2 - a
*e^2)*f^2*g^6)*x^2 + (c*d*e*f^4*g^4 - 3*a*d*e*f^2*g^6 + (3*c*d^2 - a*e^2)*f^3*g^5)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2)/(g*x+f)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2)/(g*x+f)^4,x, algorithm="giac")

[Out]

Timed out